skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holzinger, Raphael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The transport and capture of photo-induced electronic excitations is of fundamental interest to the design of energy efficient quantum technologies and to the study of potential quantum effects in biology. Using a simple quantum optical model, we examine the influence of coherence, entanglement, and cooperative dissipation on the transport and capture of excitation energy. We demonstrate that the rate of energy extraction is optimized under conditions that minimize the quantum coherence and entanglement of the system, which is a consequence of spontaneous parity time-reversal symmetry breaking. We then examine the effects of vibrational disorder and show that dephasing can be used to enhance the transport of delocalized excitations in settings relevant to biological photosynthesis. Our results highlight the rich, emergent behavior associated with the quantum-to-classical transition with relevance to the design of room-temperature quantum devices. Published by the American Physical Society2024 
    more » « less
  2. Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems. 
    more » « less